I came across this problematic quite often: I like to overload some method with same parameters for different return types, but .NET refuses generic constraints to sealed classes/primitives. I'll refer to this pattern as phantom generics
.
where
statement.
Here is my code:
public static class Reinterpret {
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe float Cast<T>(int value) where T : float { //'float' is not a valid constraint. A type used as a constraint must be an interface, a non-sealed class or a type parameter.
return *((float*)&value); //reinterpret the bytes of 'value' to a float
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe float Cast<T>(uint value) where T : float { //'float' is not a valid constraint. A type used as a constraint must be an interface, a non-sealed class or a type parameter.
return *((float*)&value);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe double Cast<T>(long value) where T : double { //'double' is not a valid constraint. A type used as a constraint must be an interface, a non-sealed class or a type parameter.
return *((double*)&value);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe double Cast<T>(ulong value) where T : double { //'double' is not a valid constraint. A type used as a constraint must be an interface, a non-sealed class or a type parameter.
return *((double*)&value);
}
}
Here's one slightly different way of approach it:
// Constraints just to be vaguely reasonable.
public static class Reinterpret<T> where T : struct, IComparable<T>
{
public T Cast(int value) { ... }
public T Cast(uint value) { ... }
public T Cast(float value) { ... }
public T Cast(double value) { ... }
// etc
}
For the implementation, you could just have a Func<int, T>
field, a Func<double, T>
field etc, and then have a big static constructor:
static Reinterpret()
{
if (typeof(T) == typeof(int))
{
// Assign all the fields using lambda expressions for ints.
// The actual assignment might be tricky, however - you may
// need to resort to some ghastly casting, e.g.
castDouble = (Func<double, T>)(Delegate)(Func<double, int>)
x => *((double*)&value;
}
....
}
Then for any type you didn't want to support, the fields would be null. Each Cast
method would look like:
if (castIntMethod != null)
{
return castInt(value);
}
throw new InvalidOperationException("...");
To be honest, this isn't something I'd really want to do. I'd generally just use BitConverter
. But it's an option.
See more on this question at Stackoverflow